# RF/Microwave Signal Generators <br> MG37020A 

## Fast Switching Microwave Signal Generator,

 100 sec Switching Speed, 10 MHz to 20 GHz
## Introduction

The MG37020A Fast Switching Microwave Signal Generator is the "ideal microwave signal generator" for applications where fast frequency switching speed is a critical parameter, including data intensive applications, high throughput manufacturing test, and signal simulation. The MG37020A Fast Switching Microwave Signal Generator provides fast switching speed along with high output power, low phase noise, spectral purity, high performance pulse modulation, size, upgradeability, reliability and service. Our signal generators are configurable for a broad range of applications from R\&D to manufacturing and depot repair. Anritsu provides you a total solution including proven reliability and standard 3 year warranty plus pre- and post-sale support that is the best in the industry.


## Specifications

The specifications in the following pages describe the warranted performance of the generator for $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. Typical specifications describe expected, but not warranted, performance based on sample testing.
Frequency Coverage

| Model/Option 4 | Frequency Coverage | Output Type |
| :---: | :---: | :---: |
| MG37022A | 2 to 20 GHz | $\mathrm{K}(\mathrm{f})$ |
| Option 4 | 10 MHz to 2.2 GHz | $\mathrm{K}(\mathrm{f})$ |

Option 4: Frequency extension down to 10 MHz . Option 4 uses a digital down-converter (DDC) with successive divide-by-two circuitry. It offers reduced SSB phase noise compared to heterodyne down-converters.

## CW Mode

Accuracy: Same as internal or external 10 MHz time base.
Internal Time Base Stability:
With aging: < $2 \times 10 \%$ day
With temperature: $<2 \times 10^{.8} / \mathrm{deg} \mathrm{C}$ over $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

## Internal Time Base Calibration:

The internal time base can be calibrated via the System Cal Menu to match an external reference ( $10 \mathrm{MHz} \pm 50 \mathrm{~Hz}$ ).

## Resolution: 0.001 Hz

## External 10 MHz Reference Input:

Accepts external $10 \mathrm{MHz} \pm 50 \mathrm{~Hz}$ (typical), 0 to +20 dBm time base signal. Automatically detects and switches to the external reference (when applied). Rear panel BNC, $50 \Omega$ impedance. Selectable bandwidth for best phase noise immunity or best phase tracking performance.

## 10 MHz Reference Output:

$>-5 \mathrm{dBm} 50 \Omega$. AC coupled.
Rear panel BNC: $50 \Omega$ impedance.
Electronic Frequency Control (EFC) Input:
-5 V to +5 V input range. $2.5 \times 10^{-6} \mathrm{~Hz} / \mathrm{V}$ sensitivity (typical). $<250 \mathrm{~Hz}$ modulation bandwidth. Rear Panel BNC: high impedance
Phase-Locked Step M ode
Sweep Width: Independently selected, 0.001 Hz to full range. Every frequency step in sweep range is phase-locked.

Accuracy: Same as internal or external 10 MHz time base.
Resolution (Minimum Step Size): 0.001 Hz
Steps: User-selectable number of steps or the step size.
Number of Steps: Variable from 1 to 10,000
Step Size: 0.001 Hz to the full frequency range of the instrument. (If the step size does not divide into the selected frequency range, the last step is truncated.)
Dwell Time Per Step: Variable from $50 \mu \mathrm{~s}$ to 30 seconds

List Sweep M ode
Under remote control or via the front panel, up to 4 tables of 3 table types with 10,001 non-sequential frequency/power sets can be stored and then addressed as a phase-locked step sweep. One table type of 10,001 points is stored in volatile memory, all other tables are stored in nonvolatile memory.

## Sweep Triggering

Sweep triggering is provided for Step Frequency Sweep, and List Frequency Sweep.

Auto: Triggers sweep automatically.
External: Triggers a sweep on the low to high transition of an external TTL signal. AUX I/O connector or BNC, rear panel.

Single: Triggers, aborts, and resets a single sweep. Reset sweep may be selected to be at the top or bottom of the sweep.

Manual (List Sweep): GPIB GET or external TTL trigger will step to next index between start/stop indices.

## U Itra-Stable Phase Tracking (Option 36)

Option 36 adds the rear panel BNC connectors and internal connections required to provide ultra stable phase tracking between multiple MG37020A synthesizers. Up to four instruments may be inter-connected.

100 MHz Reference Output: Provides the reference signal to drive up to three other MG37020A. All must have Option 36. This signal is only intended for use with other Option 36 instruments.

100 MHz Reference Input: Accepts the 100 MHz reference signal from another MG37020A with Option 36. This input is only intended for use with other Option 36 instruments.
Phase Drift: $< \pm 1^{0}$ over 100 seconds (typical), after 24 hours warm-up time.

## General

Stored Setups: Stores front panel settings on the hard disk drive. The number of stored settings is limited only by the available space on the hard disk drive. A system menu allows saving and recalling of instrument setups. Whenever the instrument is turned on, control settings come on at the same functions and values existing when the instrument was turned off.

Self-Test: Instrument self-test is performed when Self-Test menu screen is selected. If an error is detected, an error message is shown in a window on the display identifying the probable cause and remedy.

Parameter Entry: Instrument-controlled parameters can be entered in multiple ways: keypad, rotary data knob, the < and > touch pads of the cursor-control key, directly on the touch screen, with an external USB keyboard, or with an external USB mouse. The keypad or keyboard is used to enter new parameter values; the rotary data knob and the cursorcontrol key are used to edit existing parameter values. The $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ touch pads of the cursor-control key move the cursor left and right one digit under the open parameter. The rotary data knob or the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ touch pads will increment or decrement the digit position over the cursor. Controlled parameters are frequency, power level, sweep time, dwell time, and number of steps. Keypad entries are terminated by pressing the appropriate menu screen. Edits are terminated by exiting the edit menu.
Preset: Returns all instrument parameters to predefined default states or values. Any pending remote control command is aborted.

## Warm Up Time:

From Standby: 30 minutes.
From Cold Start ( 0 deg C): 120 hours to achieve specified frequency stability with aging. Instruments disconnected from AC line power for more than 72 hours require 30 days to return to specified frequency stability with aging.

Power: 85-264 Vac, $48-440 \mathrm{~Hz}, 250$ VA maximum
Standby: With ac line power connected, unit is placed in standby when front panel power switch is released from the OPERATE position.
Weight: 20 kg maximum
Dimensions: $133 \mathrm{H} \times 429 \mathrm{~W} \times 450 \mathrm{D}$ mm
Warranty: 3 years from ship date

## Remote Operation

All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via the Ethernet LAN, USB or the GPIB (IEEE-488 interface bus).

GPIB Address: Selectable from a system menu

## IEEE-488 Interface Function Subset:

Source Handshake: SH1
Acceptor Handshake: AH1
Talker: T6
Listener: L4
Service Request: SR1
Remote/Local: RL1
Parallel Poll: PP1
Device Clear: DC1
Device Trigger: DT1
Controller Capability: C0
Tri-State Driver: E2
GPIB Status Annunciators: When the instrument is operating in Remote, the GPIB status annunciators (listed below) will appear in a window on the front panel LCD.
Remote: Operating on the GPIB (all instrument front panel keys except for the RETURN TO LOCAL and the DISPLAY UPDATES soft-keys will be ignored).
LLO (Local Lockout): Disables the RETURN TO LOCAL soft-key. Instrument can be placed in local mode only via GPIB or by cycling line power.

## Environmental (MIL-PRF-28800F, class 3)

Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Relative Humidity: $5 \%$ to $95 \%$ at $40^{\circ} \mathrm{C}$
Altitude: 4,600 meters, 43.9 cm Hg
EMI: Meets the emission and immunity requirements of EN61326: 1998
EN55011: 1991/CISPR-11:1990 Group 1 Class A
EN61000-4-2: 1995-4 kV CD, 8 kV AD
EN61000-4-3: 1997 - 3 V/m
EN61000-4-4: 1995-0.5 kV SL, 1 kV PL
EN61000-4-5: 1995-1 kV - 2 kV L-E
EN61000-4-6: 1996
EN61000-4-11: 1994

## Vibration:

Random, $5-500 \mathrm{~Hz}, 0.015-0.0039 \mathrm{~g} 2 / \mathrm{Hz}$ PSD
Sinusoidal, $5-55 \mathrm{~Hz}, 0.33 \mathrm{~mm}$ displacement
Safety Directive: EN 61010-1: 1993 + A1: 92 + A2: 95

## Frequency Switching Time <br> D efinitions

Free Running Mode:
(Step or List sweep)

$$
\mathrm{t}_{\mathrm{sw}}=\text { Switching Time Unlocked }
$$



Lock Status Indicator
Rear Panel AUX I/O connector (pin 11) or Phase Locked BNC connector signal high, to be within 1 MHz of the final frequency.
$\mathrm{t}_{\mathrm{k}}=$ Locked Time $=50 \mu \mathrm{~s}+\mathrm{t}_{\mathrm{dw}}$
$\mathrm{t}_{\mathrm{dw}}=$ Dwell Time, afer locking. Selectable, $50 \mu \mathrm{~s}$ minimum
$\mathrm{t}_{\mathrm{k}}(\mathrm{min})=100 \mu \mathrm{~s}$
Single Frequency Trigger Mode:
(Manual Trigger List Mode)

$\mathrm{t}_{\mathrm{r}}=$ Trigger Response Time $30 \mu \mathrm{~s}$ (typical)
(Applies to both remote control and external trigger)

## Spectral Purity

All specifications apply at the lesser of the maximum specified leveled output power or +10 dBm output power level, unless otherwise indicated.
Spurious Signals
Harmonic and Harmonically-related:

| Frequency Range |  |
| :---: | :---: |
| 10 MHz to 100 MHz (Option 4) | $<-40 \mathrm{dBc}$ |
| $>100 \mathrm{MHz}$ to 2.2 GHz (Option 4) | $<-50 \mathrm{dBc}$ |
| $2 \mathrm{GHz}(2.2 \mathrm{GHz}$ with Opiton 4) to 20 GHz | $<-50 \mathrm{dBc}$ |

*-30 dBc typical with high power Option 15

Non-harmonics:

| Frequency Range |  |
| :---: | :---: |
| 10 MHz to 100 MHz (Option 4) | $<-40 \mathrm{dBC}$ |
| $2 \mathrm{GHz}(2.2 \mathrm{GHz}$ with Opiton 4) to 20 GHz | $<-40 \mathrm{dBc}$ |

Power Line and Fan Rotation Spurious Emissions (dBc):

| Frequency Range | Offset from Carrier |  |  |
| :---: | :---: | :---: | :---: |
|  | $<300 \mathrm{~Hz}$ | $\mathbf{3 0 0} \mathrm{~Hz}$ to $\mathbf{1 k H z}$ | $>\mathbf{1} \mathbf{~ k H z}$ |
| 10 MHz to 500 MHz (Option 4) | $<-68$ | $<-72$ | $<-72$ |
| $>500 \mathrm{MHz}$ to 1050 MHz (Option 40) | $<-62$ | $<-72$ | $<-72$ |
| $>1050 \mathrm{MHz}$ to 2.2 GHz (Option 4) | $<-56$ | $<-66$ | $<-66$ |
| $>2.2 \mathrm{GHz}$ to 8.4 GHz | $<-50$ | $<-60$ | $<-60$ |
| $>8.4 \mathrm{GHz}$ to 20 GHz | $<-46$ | $<-56$ | $<-60$ |

Residual FM (CW and Step Sweep modes, 50 Hz to 15 kHz BW):

| Frequency Range | Residual FM (Hz rms) |
| :---: | :---: |
| 10 MHz to 10 GHz | $<80$ |
| $>10 \mathrm{GHz}$ to 20 GHz | $<80$ |

AM Noise Floor: Typically < $-145 \mathrm{dBm} / \mathrm{Hz}$ at 0 dBm output and offsets $>5 \mathrm{MHz}$ from carrier.

Sub-Harmonics:

| 2 GHz to 2.5 GHz | $<-30 \mathrm{dBc}$ |
| :---: | :---: |
| 2.5 GHz to 4 GHz | None |
| 4 GHz to 20 GHz | $<-30 \mathrm{dBc}$ (typical) |

Switching Time ( $\mathrm{t}_{\mathrm{sw}}$ )

| $\mathrm{t}_{\mathrm{sw}}$ ( $\mu \mathrm{sec}$ ) | Condition |
| :---: | :---: |
| $<100 \mu \mathrm{sec}$ (typical) | Step not starting at or crossing a Dwell Frequency |
| $<500 \mu \mathrm{sec}$ (typical) | Step starting at or crossing a Dwell Frequency |

Filter Switching Dwell Frequencies: 3.3, 5.5, 8.4 and 13.25 GHz
Filter Switching Dwell Frequencies, 2.2 GHz (Option 4):
$12.5,15.625,22.5,31.25,43.75,<62.5,87.5,125,175,250,350,500$,
700,1050 and 1500 MHz
Note: Optimum switching time will be achieved using list mode with external manual transfer.

## Single-Sideband Phase Noise *

Single-Sideband Phase Noise ( $\mathrm{dBc} / \mathrm{Hz}$ ): (typical)

| Frequency Range | Offset from carrier |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 Hz | 100 Hz | 1 kHz | 10 kHz | 100 kHz | 1 MHz |
| 10 MHz to $15.625 \mathrm{MHz}($ Option 4) | $-101(-115)$ | $-126(-132)$ | $-139(-143)$ | $-142(-145)$ | $-142(-145)$ | $-145(-148)$ |
| $>15.625 \mathrm{MHz}$ to 31.25 MHz (Option 4) | $-95(-106)$ | $-121(-127)$ | $-134(-142)$ | $-139(-145)$ | $-139(-145)$ | $-145(-148)$ |
| $>31.25 \mathrm{MHz}$ to $62.5 \mathrm{MHz}($ Option 4) | $-89(-96)$ | $-116(-122)$ | $-129(-140)$ | $-135(-145)$ | $-137(-145)$ | $-142(-150)$ |
| $>62.5 \mathrm{MHz}$ to $125 \mathrm{MHz}($ Option 4) | $-83(-92)$ | $-110(-116)$ | $-127(-139)$ | $-129(-140)$ | $-134(-139)$ | $-138(-146)$ |
| $>125 \mathrm{MHz}$ to 250 MHz (Option 4) | $-77(-89)$ | $-104(-113)$ | $-123(-133)$ | $-123(-137)$ | $-128(-134)$ | $-132(-144)$ |
| $>250 \mathrm{MHz}$ to 500 MHz (Option 4) | $-71(-85)$ | $-98(-105)$ | $-117(-126)$ | $-117(-130)$ | $-122(-128)$ | $-126(-140)$ |
| $>500 \mathrm{MHz}$ to $1050 \mathrm{MHz}($ Option 4) | $-65(-77)$ | $-92(-100)$ | $-111(-118)$ | $-111(-119)$ | $-116(-118)$ | $-120(-131)$ |
| $>1050 \mathrm{MHz}$ to < 2.2 GHz (Option 4) | $-59(-70)$ | $-86(-95)$ | $-105(-112)$ | $-105(-117)$ | $-110(-114)$ | $-114(-122)$ |
| $2 \mathrm{GHz}(2.2 \mathrm{GHz}$ with Option 4) to 6 GHz | $-50(-60)$ | $-77(-88)$ | $-96(-104)$ | $-96(-108)$ | $-101(-107)$ | $-105(-115)$ |
| $>6 \mathrm{GHz}$ to 10 GHz | $-46(-55)$ | $-73(-83)$ | $-92(-102)$ | $-92(-105)$ | $-100(-104)$ | $-101(-115)$ |
| $>10 \mathrm{GHz}$ to 20 GHz | $-40(-50)$ | $-67(-77)$ | $-86(-95)$ | $-86(-98)$ | $-94(-98)$ | $-95(-114)$ |

* Phase Noise is specified and guaranteed only with internal reference. In external reference mode, the phase noise of the external supplied reference and the external reference bandwidth will dictate the instrument phase noise performance. Phase noise is not degraded when adding the high power Option 15.


Typical M G37020A single sideband phase noise at 10 GHz carrier.

## RF Output

Power level specifications apply at $250 \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
Maximum Leveled Output Power:

| Model Number | Configuration | Frequency Range | Output Power | Output Power <br> with Option 2 <br> Step Attenuator |
| :---: | :---: | :---: | :---: | :---: |
| MG37022A | Standard | 2 GHz to 10 GHz | +19.0 dBm | +18.0 dBm |
|  |  | $>10 \mathrm{GHz}$ to 20 GHz | +17.0 dBm | +15.0 dBm |
|  | Option 4 | 10 MHz to 2.2 GHz | +19.0 dBm | +18.0 dBm |
|  |  | $>2.2 \mathrm{GHz}$ to 10 GHz | +19.0 dBm | +18.0 dBm |
|  | $>10 \mathrm{GHz}$ to 20 GHz | +17.0 dBm | +15.0 dBm |  |

Maximum Leveled Output Power with High Power Option 15:

| Model Number | Configuration | Frequency Range | Output Power | Output Power <br> with Option 2 <br> Step Attenuator |
| :---: | :---: | :---: | :---: | :---: |
| MG37022A | Standard | 2 GHz to 20 GHz | +23.0 dBm | +21.0 dBm |
|  | Option 4 | 10 MHz to $\leq 2.2 \mathrm{GHz}$ <br> $>2.2 \mathrm{GHz}$ to 20 GHz | +19.0 dBm <br> +21.0 dBm | +18.0 dBm <br> +19.0 dBm |

Minimum Leveled Output Power:

| Model Number | Configuration | Frequency Range | Output Power | Output Power (dBm) <br> with Option 2 <br> Step Attenuator |
| :---: | :---: | :---: | :---: | :---: |
| MG37022A | Standard | 10 MHz to 20 GHz | -5.0 dBm <br> $(-10.0 \mathrm{dBm}$ typical) | -105.0 dBm <br> $(-110.0 \mathrm{dBm}$ typical) |
|  | High Power <br> (Option 15) | 10 MHz to 20 GHz | -5.0 dBm <br> $(-10.0 \mathrm{dBm}$ typical) | -105.0 dBm <br> $(-110.0 \mathrm{dBm}$ typical) |

Unleveled Output Power Range (typical)
Without Step Attenuator (Option 2): $>40 \mathrm{~dB}$ below max settable power
With Step Attenuator (Option 2): >130 dB below max settable power
Power Level Switching Time (to within specified accuracy)
Without Change in Step Attenuator (Option 2): <100 $\mu$ s typical
With Change in Step Attenuator (Option 2): <20 ms typical

## Accuracy and Flatness*

Accuracy specifies the total worst case accuracy. Flatness is included within the accuracy specification.
Accuracy: $\pm 1.0 \mathrm{~dB}$
Flatness: $\pm 0.8 \mathrm{~dB}$
Accuracy and Flatness with high power (Option 15)
Accuracy: $\pm 1.5 \mathrm{~dB}$
Flatness: $\pm 1.5 \mathrm{~dB}$
*Specification only applies to the output level from maximum leveled output power to 100 dBm below maximum leveled output power.

## Other Output Power Specifications

Output Units: Output units are in dBm.
Output Power Resolution: 0.01 dB
Source Impedance: $50 \Omega$ nominal
Source VSWR (Internal Leveling): <2.0:1 typical
Power Level Stability with Temperature: $0.04 \mathrm{~dB} / \mathrm{deg} \mathrm{C}$ typical
Output On/Off: Toggles the RF output between an off and on state. During the off state, the RF oscillator is turned off. The off or on state is indicated by two LEDs located above and below the OUTPUT ON/OFF key on the front panel. Switching the RF on from an off state will require 1 ms for the output to be phase-locked and leveled.

RF On/Off Between Frequency Steps: System menu selection of RF on or RF off during frequency switching in CW, Step sweep and List Sweep modes. RF off state will provide $>40 \mathrm{~dB}$ of attenuation of output power and will increase any switching time.
Internal Leveling: Power is leveled at the output connector in all modes.

## Modulation

Pulse M odulation (Option 26):
Option 26 adds pulse modulation, driven externally via a rear panel BNC connector (TTL levels) and an internal modulation waveform generator.
Pulse modulation specifications apply at maximum rated power, unless otherwise indicated.
On/Off ratio: $>80 \mathrm{~dB}$ ( $>70 \mathrm{~dB}$ with high power Option 15)

## Minimum Leveled Pulse Width:

$<100 \mathrm{~ns}, 2 \mathrm{GHz}(2.2 \mathrm{GHz}$ with Option 4) to 20 GHz
$<1 \mu \mathrm{~s}, 10 \mathrm{MHz}$ to $<2 \mathrm{GHz}$ ( 2.2 GHz with Option 4)
Minimum Unleveled Pulse width: <10 ns
Leveled Accuracy Relative to CW ( 100 Hz to 1 MHz PRF):
$\pm 0.5 \mathrm{~dB}, \geq 1 \mu$ s pulse width
$\pm 1.0 \mathrm{~dB},<1 \mu$ s pulse width
Pulse delay (typical): 50 ns in External Mode
Pulse Repetition Frequency (PRF) Range:
DC to 10 MHz , unleveled
100 Hz to 5 MHz , leveled

| Frequency <br> Range | Rise and Fall <br> Time* | Overshoot | Pulse Width <br> Compression | Video <br> Feedthrough |
| :--- | :---: | :---: | :---: | :---: |
| 10 MHz to 31.25 MHz <br> (Option 4) | 400 ns typical | $33 \%$ typical | 40 ns typical | $\pm 70 \mathrm{mV}$ typical |
| $>31.25 \mathrm{MHz}$ to 125 MHz <br> (Option 4) | 90 ns typical | $22 \%$ typical | 12 ns typical | $\pm 130 \mathrm{mV}$ typical |
| $>125 \mathrm{MHz}$ to 500 MHz <br> (Option 4) | 33 ns typical | $11 \%$ typical | 12 ns typical | $\pm 70 \mathrm{mV}$ typical |
| $>500 \mathrm{MHz}$ to $<2.2 \mathrm{GHz}$ <br> (Option 4) | 15 ns typical | $10 \%$ | 12 ns typical | $\pm 50 \mathrm{mV}$ typical |
| $2 \mathrm{GHz}(2.2 \mathrm{GHz}$ with <br> Option 4) to 20 GHz | 10 ns <br> $(5 \mathrm{~ns}$ typical) | $10 \%$ | 8 ns typical | $\pm 30 \mathrm{mV}$ typical |

* Rise and Fall Time, 10\% to 90\%

External Input: Rear-panel BNC.
Drive Level and Input Logic: TTL compatible input, active high or active low selectable from modulation menu.

## Internal Pulse Generator (Included with Option 26)

Modes: Single, double, triple, quadruple
Triggers: Free-run, triggered, gated
Inputs/Outputs: Video pulse and sync out, rear-panel BNC connectors

| Pulse Parameter | Specification, <br> $\mathbf{1 0 0 ~ M H z ~ C l o c k ~ R a t e ~}$ |
| :--- | :---: |
| Pulse Width | 10 ns to 10 s |
| Pulse Period | 30 ns to 10 s |
| Variable Delay, Single Pulse | 0 to 10 s |
| Variable Delay, Doublet, Triplet, Quadruplet | 100 ns to 10 s |
| Resolution | 10 ns |
| Accuracy | $10 \mathrm{~ns} \mathrm{(5nstypical)}$ |

## Inputs and Outputs

| Input and Output Connections |  |  |
| :--- | :---: | :---: |
| Nomenclature | Type | Location |
| RF Output | K (female) | Front Panel |
| RF Output (Option 9) | K (female) | Rear Panel |
| 10 MHz REF IN | BNC | Rear Panel |
| 10 MHz REF OUT | BNC | Rear Panel |
| LOCK STATUS OUT | BNC | Rear Panel |
| EXT TRIG IN | BNC | Rear Panel |
| EFC IN | BNC | Rear Panel |
| PULSE TRIG IN (Option 26) | BNC | Rear Panel |
| PULSE SYNC OUT (Option 26) | BNC | Rear Panel |
| PULSE VIDEO OUT (Option 26) | BNC | Rear Panel |
| AUX I/O | 25 Pin D-type (female) | Rear Panel |
| EXT MONITOR | 15 Pin VGA (female) | Rear Panel |
| SERIAL I/O | 9 Pin D-type (male) | Rear Panel |
| IEEE-488 GPIB | Type 57 | Rear Panel |
| LAN (100BaseT) | RJ45 | Rear Panel |
| USB-2.0 (Host) | USB type A (2 each) |  |
| USB-2.0 (Host) | USB type A (2 each) | Front Panel |
| USB-2.0 (Device) | USB type B | Rear Panel |

Note: Connectors may be available but not active, if option is not ordered.


## EXT ALC IN

EXT ALC IN provides for leveling the RF output signal externally with either a detector or power meter. Signal requirements are shown in the RF Output specifications.

## RF OUTPUT

Provides for RF output from a $50 \Omega$ source impedance. K Connector, female. Option 9 moves the RF output connector to the rear panel.

## 10 MHz REF IN

Accepts an external $10 \mathrm{MHz} \pm 100 \mathrm{~Hz}, 0$ to +20 dBm time-base signal.

## 10 MHz REF OUT

Provides a $1 \mathrm{Vp}-\mathrm{p}, \mathrm{AC}$ coupled, 10 MHz signal derived from the internal frequency standard. $50 \Omega$ impedance.

## 100 MHz REF IN (Option 36)

Accepts the 100 MHz signal from an MG37020A with Option 36 for ultra stable phase tracking.

## 100 MHz REF OUT (Option 36)

Provides the 100 MHz signal for the MG37020A Option 36 ultra stable phase tracking.

## AUX I/O (Auxiliary Input/Output)

Provides for most of the rear panel BNC connections through a single, 25 -pin, D type connector. Supports master-slave operation with another synthesizer or allows for a single-cable interface with other Anritsu instruments. (see figure below)

## SERIAL I/O (Serial Input/Output)

Provides access to RS-232 terminal ports.

## EFC IN

Provides the capability to frequency modulate the internal crystal oscillator, allowing phase locking in an external lock loop.
Specifications on page 2.

## EEE-488 GPIB

Provides input/output connections for the General Purpose Interface Bus (GPIB).

## USB-2.0 I/O

Provides input/output connections for the USB interface. Type A connectors are available on both the front and rear panels for USB Host. One type B connector on the rear panel is for USB device mode.

ETHERNET (100BaseT LAN) I/O
Provides input/output connections for the LAN interface.

## PULSE TRIG IN

Accepts an external TTL compatible signal to pulse modulate the RF output signal or to trigger or to gate the optional internal pulse generator. Available with Option 26, Pulse Modulation.

## PULSE SYNC OUT

Provides a TTL compatible signal, synchronized to the internal pulse modulation output, Option 26.

## PULSE VIDEO OUT

Provides a video modulating signal from the internal pulse generator, Option 26.

## EXT TRIG IN

Accepts an external LVTTL compatible signal (5V tolerant) to trigger a frequency sweep, frequency step, power sweep, power step, list sweep or the next step in a list.

## LOCK STATUS OUT

Provides a TTL compatible signal with a high level indicating the RF Output is phase locked and leveled.

## EXT MONITOR

Provides a VGA connector for the use of an external display monitor.


## Aux I/O Pins:

1. Horizontal Output
2. Chassis Ground
3. Sequential Sync Output
4. Low Alternate Enable Output
5. Marker Output
6. Retrace Blanking Output
7. Low Alternate Sweep Output
8. Chassis Ground
9. n/c
10. Sweep Dwell Output
11. Lock Status Output
12. Penlift
13. External Trigger Input
14. V/GHz Output
15. End-of-Sweep Input
16. End-of-Sweep Output
17. n/c
18. Sweep Dwell Input
19. n/c
20. Bandswitch Blanking Output
21. MasterReset
22. Horizontal Sweep Input
23. Horizontal Sweep Input Return
24. Chassis Ground
25. Memory Sequencing Input

## Ordering Information

## M odel

MG37022A
2 to 20 GHz Fast Switching Signal Generator
Options

| MG37022A-001 | Rack Mount with Slides - Kit contains a set of track slides, mounting ears and front panel handles for a standard 19 inch equipment rack. | MG37022A-037 | Performance Suite - For ease of ordering and package pricing, this option bundles Options 2, 4, 15 and 26. |
| :---: | :---: | :---: | :---: |
| MG37022A-002 | Mechanical Step Attenuator - Adds a 110 dB range, $10 \mathrm{~dB} /$ step attenuator. RF output power is reduced. | MG37022A-088 | 1 msec Switching Speed Limit - Limits the frequency switching speed to 1 msec to comply with United States Export Control regulations |
| MG37022A-004 | 10 MHz to 2.2 GHz RF Coverage - Uses a digital down converter to significantly reduce SSB phase noise | MG37022A-098 | Standard Calibration to ISO17025 and ANSI/NCSL Z540. Provides a calibration certificate, decal and "Calibration void if removed" tamper seals. |
| MG37022A-009 | Rear Panel Output - Moves the RF output connector to the rear panel. | MG37022A-099 | Premium Calibration to ISO17025 and |
| MG37022A-015 | High Power - Adds high-power RF components to the instrument to increase the output power level. |  | ANSI/NCSL Z540. Provides everything included with Option 98 plus test report and uncertainty data. |
| MG37022A-017 | Delete Front Panel - Deletes the front panel for use in remote controlled applications. (Only available with Option 1) | Optional Accessories |  |
|  |  | 34RKNF50 | DC to 20 GHz ruggedized K male to Type-N |
| MG37022A-026 | Pulse Modulation - Includes internal waveform generator and external input via a rear panel BNC connector. | 63270 | female adapter. <br> Transit case ( $16 \mathrm{~kg}, 65 \mathrm{~cm} \times 81 \mathrm{~cm}$, roll-away on two wheels). |
| MG37022A-035 | Removable Hard Drive - Provides the capability to remove the internal hard drive, and includes one replacement hard drive with instrument software. | 806-97 | AUX I/O cable, 25 pin to BNC: Sequential Sync, Marker Out, Bandswitch Blanking, Retrace Blanking, Sweep Dwell In, V/GHz and Horizontal Out. |
| MG37022A-036 | Ultra Stable Phase Track - Provides the capability for ultra-stable phase tracking between instruments using the internal 100 MHz reference. |  |  |

## /inritsu

## Anritsu Corporation

5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan
Phone: +81-46-223-1111
Fax: +81-46-296-1264

- U.S.A.


## Anritsu Company

1155 East Collins Boulevard, Suite 100,
Richardson, Texas 75081 U.S.A.
Toll Free: 1-800-ANRITSU (267-4878)
Phone: +1-972-644-1777
Fax: +1-972-671-1877

## - Canada

## Anritsu Electronics Ltd

700 Silver Seven Road, Suite 120, Kanata
Ontario K2V 1C3, Canada
Phone: +1-613-591-2003
Fax: +1-613-591-1006

## - Brazil

## Anritsu Electrônica Ltda

Praca Amadeu Amaral, 27-1 Andar
01327-010 - Paraiso, São Paulo, Brazil
Phone: +55-11-3283-2511
Fax: +55-11-3886940

## - Mexico

Anritsu Company, S.A. de C.V
Av. Ejército Nacional No. 579 Piso 9, Col. Granada
1520 México, D.F., México
Phone: +52-55-1101-2370
Fax: +52-55-5254-3147

## - U.K.

Anritsu EMEA Ltd.
200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K.
Phone: +44-1582-433280
Fax: +44-1582-731303

## - France

Anritsu S.A.
16/18 Avenue du Québec-SILIC 720
91961 COURTABOEUF CEDEX, France
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

## - Germany

## Anritsu GmbH

Nemetschek Haus, Konrad-Zuse-Platz
1829 München, Germany
Phone: +49 (0) 89 442308-0
Fax: +49 (0) 89 442308-55

- Italy

Anritsu S.p.A.
Via Elio Vittorini, 129, 00144 Roma, Italy
Phone: +39-06-509-9711
Fax: +39-06-502-2425

## - Sweden

## Anritsu AB

Borgafjordsgatan 13, 16440 Kista, Sweden
Phone: +46-8-534-707-00
Fax: +46-8-534-707-30

## - Finland

Anritsu AB
Teknobulevardi 3-5, FI-01530 Vantaa, Finland
Phone: +358-20-741-8100
Fax: +358-20-741-8111

## - Denmark

## Anritsu A/S

Kirkebjerg Allé 90 DK-2605 Brøndby, Denmark
Phone: +45-72112200
Fax: +45-72112210

- Spain

Anritsu EMEA Ltd
Oficina de Representación en España
Edificio Veganova
Avda de la Vega, $\mathrm{n}^{\circ} 1$ (edf 8 , pl1, of 8 )
28108 ALCOBENDAS - Madrid, Spain
Phone: +34-91490576
Fax: +34-914905762

- United Arab Emirates

Anritsu EMEA Ltd.
Dubai Liaison Office
P O Box 500413 - Dubai Internet City
AI Thuraya Building, Tower 1, Suite 701, 7th Floor
Dubai, United Arab Emirates
Phone: +971-4-3670352
Fax: +971-4-3688460

- Singapore

Anritsu Pte. Ltd.
60 Alexandra Terrace, \#02-08, The Comtech (Lobby A)
Singapore 118502
Phone: +65-6282-2400
Fax: +65-6282-2533

India
Anritsu Pte. Ltd.
India Liaison Office
Unit No.S-3, Second Floor, Esteem Red Cross Bhavan,
No.26, Race Course Road, Bangalore 560001 India
Phone: +91-80-32944707
Fax: +91-80-22356648

- P. R. China (Hong Kong)

Anritsu Company Ltd.
Units 4 \& 5, 28th Floor, Greenfield Tower, Concordia Plaza
No. 1 Science Museum Road, Tsim Sha Tsui East,
Kowloon, Hong Kong, P.R. China
Phone: +852-2301-4980
Fax: +852-2301-3545

- P. R. China (Beijing)

Anritsu Company Ltd.
Beijing Representative Office
Room 1515, Beijing Fortune Building
No. 5 , Dong-San-Huan Bei Road,
Chao-Yang District, Beijing 100004, P.R. China
Phone: +86-10-6590-9230
Fax: +82-10-6590-9235

- Korea

Anritsu Corporation, Ltd.
8F Hyunjuk Bldg. 832-41, Yeoksam-Dong,
Kangnam-ku, Seoul, 135-080, Korea
Phone: +82-2-553-6603
Fax: +82-2-553-6604

## - Australia

Anritsu Pty Ltd.
Unit 21/270 Ferntree Gully Road, Notting Hill
Victoria, 3168, Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

## Taiwan

Anritsu Company Inc.
7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817

NIDH
(Bnritsu All trademarks are registered trademarks of

